Theorem 2:

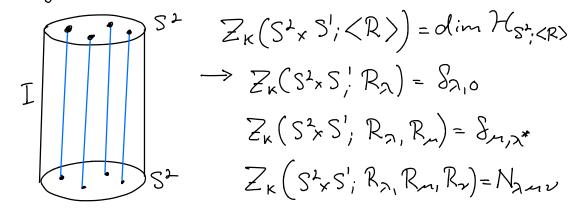
Let M be a compact oriented 3-manifold without boundary. Suppose that M is obtained as Dehn surgery on a framed link L with m components L_j , $I \le j \le m$, in S³. Then,

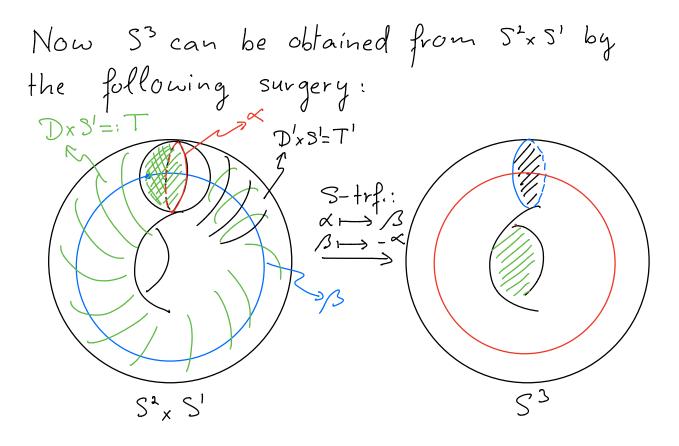
 $Z_{\kappa}(M) = S_{00} C^{O(L)} \sum_{\{a\}} S_{0a_1} \cdots S_{0a_m} J(L_{ia_1, \dots, a_m})$ is the Chern-Simons partition funct. of M.

Let us first compute $Z_{\kappa}(S^3)$ correspoding to the case with <u>no</u> link.

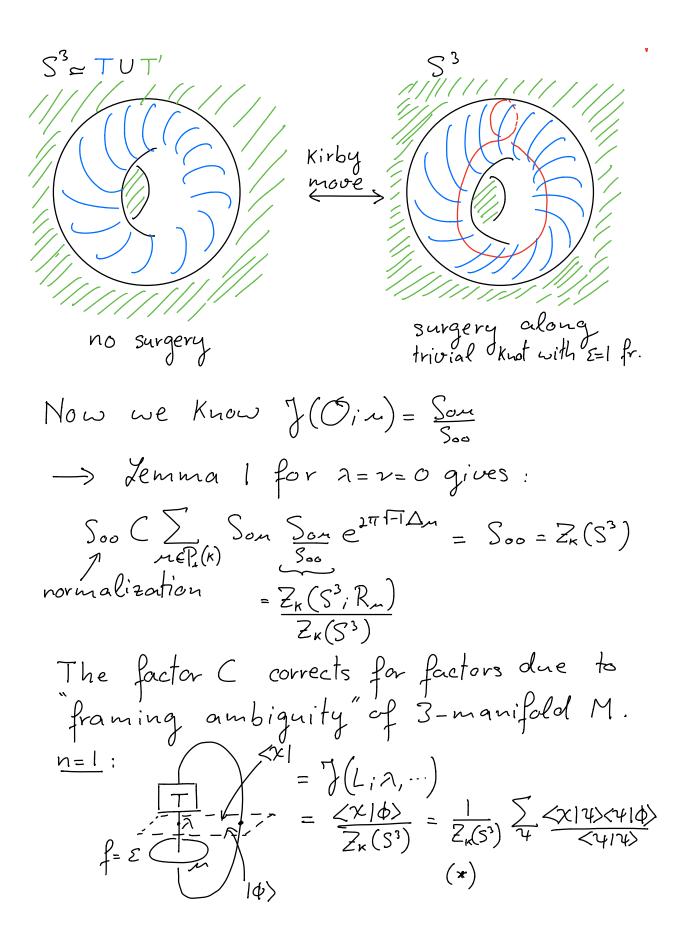
In the case of
$$Z = S^2$$
, we get:
 $\dim \mathcal{H}_{S^2} = | \implies Z_k(S^2 \times S') = |$

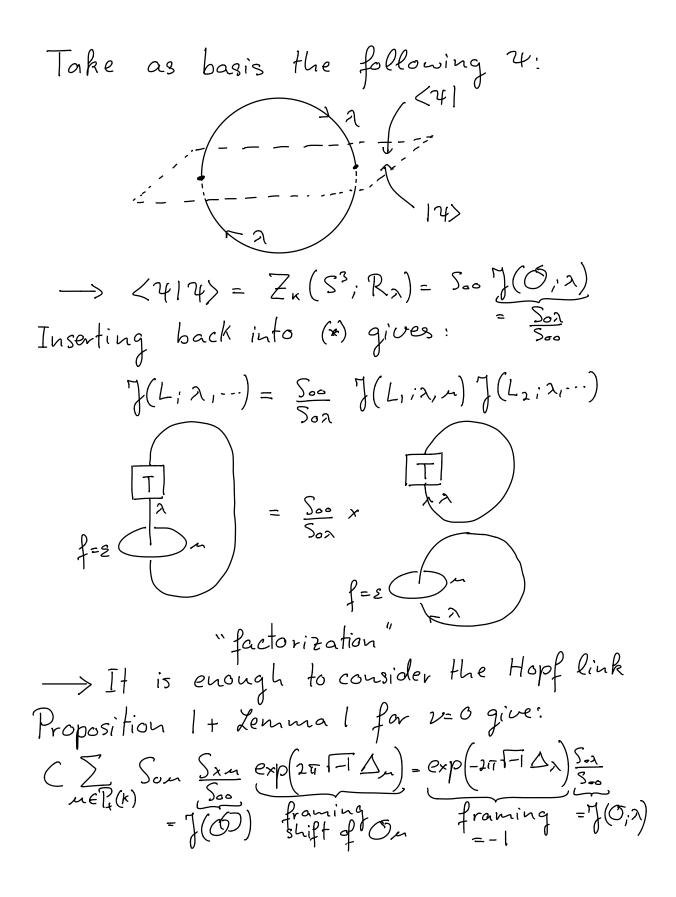
In case there are Wilsonlines passing through S² and along S', we get:



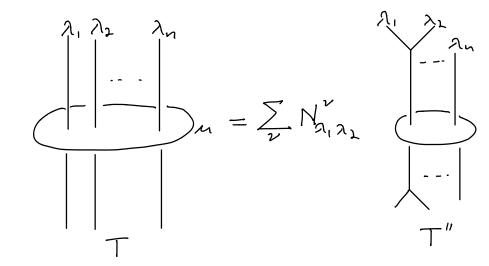


We see that
$$S^{1} \times S'$$
 is obtained by gluing
solid tori T and T' by identifying
 $\partial T = \partial T'$
Similarly, S^{3} is obtained by identifying:
 $\partial T = S \partial T'$
 $S - trf.$
At the level of conformal blocks, this gives:
 $Z_{k} (S^{1} \times S'; R_{0}) = \langle \Upsilon | X_{0} \rangle$
 $\Rightarrow Z_{k} (S^{2} \times S'; R_{0}) = \langle \Upsilon | X_{0} \rangle$
 $\Rightarrow Z_{k} (S^{2} \times S'; R_{0}) = \langle \Upsilon | X_{0} \rangle$
 $= \sum_{m} \langle \Upsilon | S_{m}^{m} X_{m} \rangle = \sum_{m} S_{0}^{m} \langle \Upsilon | X_{m} \rangle$
 $= \sum_{m} S_{0}^{m} \frac{Z_{k} (S^{2} \times S'; R_{m})}{= S_{n,0}} = S_{00}$
 $= S_{n,0}$
 \prod
Proof of Theorem 2:
Vet us first deal with the case $n=0$:
We know by Zemma 2 that $Z_{k} (S^{3}) = S_{00}$
We thus have to show:
 $S_{00} C \sum_{n \in P_{0}(k)} S_{00} \int (O; M) e^{2\pi i T \Delta m} S_{00} \int (D; M) e^{2\pi i T \Delta m} S_{0} \int (D; M) e^{2\pi i T \Delta m} S_{0} \int (D; M) e^{2\pi i T \Delta m} S_{0} \int (D; M) e^{2\pi i T \Delta m} S_{0} \int (D; M) e^{2\pi i T \Delta m} S_{0} \int (D; M) e^{2\pi i T \Delta m} S_{0} \int (D; M) e^{2\pi i T \Delta m} S_{0} \int (D; M) e^{2\pi i T \Delta m} S_{0} \int (D; M) e^{2\pi i T \Delta m} S_{0} \int (D; M) e^{2\pi i T \Delta m} S_{0} \int (D; M) e^{2\pi i T \Delta m} S_{0} \int (D; M) e^{2\pi i T \Delta m} S_{$





Next, we show invariance of $Z_{\kappa}(M)$ under Kirby moves by induction on n. Consider the local situation



It will be sufficient to show $\binom{\sigma(L)}{\sum} S_{on} J(T, n, \lambda_1, ..., \lambda_n) = \binom{\sigma(L')}{J(T, \lambda_1, ..., \lambda_n)}$ where L' is obtained from L by a Kirby move of deleting On and twisting by E. \rightarrow To achieve this, fuse two strands λ_1 and λ_2 (see above) and write $\overline{TST} = \sum_{\nu} F_{S\nu} \downarrow^{\nu}$ and $\boxed{IST} = \sum_{\nu} F_{S'\nu'} \downarrow^{\nu}$ \rightarrow The tangle operator $J(T, n, \lambda_1, -.., \lambda_n)$ is expressed as a linear combination $\sum_{n} N_{n,n}^{\nu} F_{n} \mathcal{J}(\mathcal{T}', m, \nu, \lambda_{3}, \dots, \lambda_{n}) F_{2}$ where F_{n} and F_{2} are the above elementary connection matrices and \mathcal{T}'' is an (n-1, n-1)tangle \rightarrow have reduced situation to n-1 stands By induction hypothesis and change of $\sigma(L)$ under Kirby moves, we obtain the desired statement. \square

Proposition 2:
For a connected sum
$$M_1 \# M_2$$
 of closed
oriented 3-manifolds M_1 and M_2
 $Z_{\kappa} (M_1 \# M_2) = \frac{1}{S_{\sigma\sigma}} Z_{\kappa} (M_1) Z_{\kappa} (M_2)$
holds

Proposition 3:
We denote by - M the 3-manifold M
with the orientation reversed. Then we have

$$Z_{\kappa}(-M) = \overline{Z_{\kappa}(M)}$$

Proof: If M is obtained as Dehn surgery on a framed link L, then surgery on its mirror

image -L yields -M. Result follows
from Prop. 3, §9.
Extend the above construction to case where
3-manifold M contains a link L:
Xet L,, --, Ln be components of L
with coloring
$$\lambda_1, --, \lambda_n \in P_4(K)$$
. Suppose
 $(S^3, L') \rightarrow (M, L)$ is obtained by Dehn
surgery on framed link NC S³.
assume: NAL'= ϕ . Xet N,, ..., Nm be the
components of N. Then we have
 $Z_K(M, L; \lambda_1, --, \lambda_n)$
= Soo C ^{$\sigma(N)$} Son; Son $J(L'UN; \lambda_1, ..., \lambda_n)$,