Theorem 2:
Let M be a compact oriented 3-manifold without boundary. Suppose that M is obtained as Dehn surgery an a framed link L with m components $L_{j i} 1 \leqslant j \leqslant m$, in S^{3}. Then,

$$
Z_{k}(M)=S_{o 0} C^{\sigma(L)} \sum_{\{\lambda\}} S_{0 \lambda_{1}} \cdots S_{0 \lambda_{m}} J\left(L_{\left.i, \lambda_{1}, \cdots, \lambda_{m}\right)}\right)
$$

is the Chern-Simonspartition funct. of M.
Let us first compute $Z_{K}\left(S^{3}\right)$ corresponding to the case with no link.
Lemma 2: $Z_{k}\left(S^{3}\right)=$ Soc
Proof:
The first step is to compute $Z_{K}\left(\Sigma \times S^{\prime}\right)$ Viewing S^{\prime},.. as the "time direction," we get

$$
\begin{aligned}
\rightarrow Z_{k}\left(\Sigma \times S^{\prime}\right) & =\operatorname{Tr}_{\mathcal{H}_{\Sigma}}(1) \\
& =\operatorname{dim}^{2} \mid \mathcal{C}_{\Sigma}
\end{aligned}
$$

In the case of $\Sigma=S^{2}$, we get:

$$
\operatorname{dim} 7 C_{s^{2}}=1 \Rightarrow Z_{k}\left(S^{2} \times S^{1}\right)=1
$$

In case there are Wilsonlines passing through S^{2} and along S^{\prime}, we get:

$$
\begin{gathered}
Z_{k}\left(S^{2} \times S_{i}^{1}\langle R\rangle\right)=\operatorname{dim} H_{\left.S_{i}^{2} ; R\right\rangle} \\
\rightarrow Z_{k}\left(S^{2} \times S_{i}^{\prime} R_{\lambda}\right)=\delta_{\lambda, 0} \\
Z_{k}\left(S^{2} \times S_{;}^{\prime} R_{\lambda,}, R_{\mu}\right)=\delta_{\mu, \lambda^{*}} \\
Z_{k}\left(S^{2} \times S_{i}^{\prime} R_{\lambda,} R_{\mu} R_{\nu}\right)=N_{\lambda \mu \nu}
\end{gathered}
$$

Now S^{3} can be obtained from $S^{2} \times S^{\prime}$ by the following surgery:

We see that $S^{2} \times S^{\prime}$ is obtained by gluing solid tori T and T^{\prime} by identifying

$$
\partial T=\partial T^{\prime}
$$

Similarly, S^{3} is obtained by identifying:

$$
\begin{aligned}
\partial T= & \int_{\uparrow} \partial T^{\prime} \\
& S-\operatorname{trf} .
\end{aligned}
$$

At the level of conformal blocks, this gives:

$$
\begin{gathered}
Z_{k}\left(S^{2} \times S_{i}^{\prime} R_{0}\right)=\left\langle\psi \mid x_{0}\right\rangle \\
\Rightarrow Z_{k}\left(S^{3} ; R_{0}\right)=\left\langle\psi \mid S x_{0}\right\rangle \\
=\sum_{\mu}\left\langle\psi \mid S_{0}^{m} x_{m}\right\rangle=\sum_{\mu} S_{0}^{m}\left\langle\psi \mid x_{m}\right\rangle \\
=\sum_{\mu} S_{0}^{m} \underbrace{Z_{k}\left(S^{2} \times S_{i}^{\prime} R_{\mu}\right)}_{=\delta_{\mu, 0}}=S_{00}
\end{gathered}
$$

Proof of Theorem 2:
Let us first deal with the case $n=0$:
We know by Lemma 2 that $Z_{k}\left(S^{3}\right)=$ Soc
We thus have to show:

$$
S_{00} C \sum_{\mu \in P_{+}(k)} S_{o m} \gamma\left(O_{i \mu}\right) e^{2 \pi \sqrt{-1} \Delta_{\mu}} \begin{gathered}
\text { increase of framing }
\end{gathered}=S_{o 0}
$$

no surgery

surgery along

Now we know $\gamma(O ; \mu)=\frac{\text { Som }}{S_{00}}$
\rightarrow Lemma 1 for $\lambda=2=0$ gives:

$$
\begin{aligned}
& \quad \int_{\gamma_{00} C} C \sum_{\mu \in P_{+}(k)} S_{0 \mu} \underbrace{\sum_{S_{0 \mu}}}_{\text {normalization }} e^{2 \pi \sqrt{-1} \Delta_{\mu}}=S_{00}=Z_{k}\left(S^{3}\right) \\
& =\frac{Z_{k}\left(S^{3} ; R_{\mu}\right)}{Z_{k}\left(S^{3}\right)}
\end{aligned}
$$

"The factor C corrects for factors due to "framing ambiguity" of 3 -manifold M.
$n=1$:

Take as basis the following ψ :

$$
\begin{aligned}
& \longrightarrow\langle\psi \mid \psi\rangle=Z_{k}\left(S^{3} ; R_{\lambda}\right)=S_{00} \frac{J\left(O_{i} \lambda\right)}{=\frac{S_{0 \lambda}}{S_{00}}}
\end{aligned}
$$

Inserting back into (x) gives:

$$
J\left(L_{i} \lambda, \ldots\right)=\frac{S_{00}}{S_{0 \lambda}} J\left(L_{1} ; \lambda, \mu\right) J\left(L_{2} ; \lambda_{1}, \cdots\right)
$$

"factorization"
\longrightarrow It is enough to consider the Hopf link Proposition $1+$ Lemma l for $\nu=0$ give:

$$
C \sum_{\mu \in P_{+}(k)} S_{o \mu} \underbrace{\frac{S_{x \mu}}{S_{00}}}_{=J(\sigma))} \underbrace{\exp \left(2 \pi \sqrt{-1} \Delta_{\mu}\right)}_{\begin{array}{c}
\text { framing } \\
\text { Shift of } O_{\mu}
\end{array}}=\underbrace{\exp \left(-2 \pi \sqrt{-1} \Delta_{\lambda}\right)}_{\begin{array}{l}
\text { framing } \\
=-1
\end{array}} \underbrace{S_{-\lambda}}_{=J\left(\sigma_{i} \lambda\right)}
$$

Next, we show invariance of $Z_{k}(M)$ under Kirby moves by induction on n. Consider the local situation

T

It will be sufficient to show

$$
C^{\sigma(L)} \sum_{\mu} S_{o \mu} \gamma\left(T_{i} \mu, \lambda_{1}, \ldots, \lambda_{n}\right)=C^{\sigma\left(L^{\prime}\right)} \gamma\left(T_{i}^{\prime}, \lambda_{1}, \ldots, \lambda_{n}\right)
$$

where L ' is obtained from L by a Kirby move of deleting O^{μ} and twisting by s.
\rightarrow To achieve this, fuse two strands λ_{1} and λ_{2} (see above) and write

$$
\begin{aligned}
& \text { and } \lambda_{2} \text { (see above) and while } \lambda_{\nu}^{\lambda_{1}^{\prime} \lambda_{2}}=\left.\sum_{\delta^{\prime}} F_{\delta^{\prime} \nu^{\prime}}^{\lambda_{1}^{\prime}}\right|_{\nu^{\prime}} ^{\lambda_{2}}
\end{aligned}
$$

\rightarrow The tangle operator $f\left(T_{i}, \mu_{1}, \lambda_{1}, \ldots, \lambda_{n}\right)$ is expressed as a linear combination

$$
\sum_{\nu} N_{\lambda_{1} \lambda_{2}}^{\nu} F_{1} \gamma\left(T^{\prime \prime} ; \mu, \nu, \lambda_{3}, \ldots, \lambda_{n}\right) F_{2}
$$

where $F_{1}{ }^{2}$ and F_{2} are the above elementary connection matrices and $T^{\prime \prime}$ is an $(n-1, n-1)$ tangle \rightarrow have reduced situation to $n-1$ strands By induction hypothesis and change of $\sigma(L)$ under Kirby moves, we obtain the desired statement.

Proposition 2:
For a connected sum $M_{1} \# M_{2}$ of closed oriented 3 -manifolds M_{1} and M_{2}

$$
Z_{k}\left(M_{1} \# M_{2}\right)=\frac{1}{S_{00}} Z_{k}\left(M_{1}\right) Z_{k}\left(M_{2}\right)
$$

holds.
Proposition 3:
We denote by - M the 3 -manifold M with the orientation reversed. Then we have

$$
Z_{k}(-M)=\overline{Z_{k}(M)}
$$

Proof:
If M is obtained as Dehn surgery an a framed link L, then surgery on its mirror
image $-L$ yields $-M$. Result follows from Prop. 3, $\$ 9$.

Extend the above construction to case where 3-manifold M contains a link L :
Let L_{1}, \ldots, L_{n} be components of L with coloring $\lambda_{1}, \ldots, \lambda_{n} \in P_{t}(k)$. Suppose $\left(S^{3}, L^{\prime}\right) \rightarrow(M, L)$ is obtained by Dehn surgery on framed link $N \subset S^{3}$. assume: $N \cap L^{\prime}=\varnothing$. Let N_{1}, \ldots, N_{m} be the components of N. Then we have

$$
\begin{aligned}
& Z_{k}\left(M, L_{i} \lambda_{1}, \ldots, \lambda_{n}\right) \\
= & S_{o 0} C^{\sigma(N)} \sum_{\mu} S_{o \mu_{i}} \cdot \cdot S_{0 \mu m} \gamma\left(L^{\prime} \cup N_{i} \lambda_{1}, \cdots, \lambda_{n}, \mu_{1}, \ldots, \mu_{m}\right)
\end{aligned}
$$

